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This article contains a set of rules which make it possible to distin- 

guish between the qualitative pictures of the behavior of integral curves 
in the neighborhood of a periodic solution in the plane. 

1. Statement of the problem. Basic definitions. Let us con- 

sider the system 

; = fl(5, y), i = f2 (T Y) (1.1) 

We shall assume that the system (1.1) has the following properties: 

a) the functions fi(x, y) are given in some region G of the xy-plane, 
they are real, continuous and twice differentiable with respect to their 

arguments; 

b) there exist two differentiable real functions 

5 = ‘PI (0, Y = ‘pz (0 (1.2) 

periodic in t of period 2r, which constitute a solution of (1.1). 'Ihe 
graph of this solution lies entirely in G. 

It is known [l 1 that the periodic solutions fall, in relation to the 
structure of their neighborhoods, into two classes: the isolated ones, 

and the non-isolated ones. 

Definition 1.1. 'Ibe periodic solution (1.2) of the system (1.1) is 

said to be isolated if there exists a small enough S-neighborhood 

S(M, 8) CG of the set M, which does not contain a graph of any other 
periodic solution of (1.1). 
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The isolated periodic solutions of the system (1.1) are called limit 

cycles. One distinguishes between three types of limit cycles according 

to the behavior of integral curves in their neighborhoods. 

We shall denote by p((x, y), M) the distance of the point (x, y) from 
the set M. 

Definition 1.2. A 1 imit cycle is said to be: 

1) stable if there exists a small enough neighborhood S(M, 6)C G 

such that all integral curves of the system (1.1) which begin in S(M, 6) 

come arbitrarily close to M as t + 00. In other words, if (x,,,y,,)c~S M,6), 
then the quantity p((x, y), M) + 0 as t + 00, where 

J; = r (1, 2‘0, y,,), y == g (t, “‘0, 2/o) (I.:<) 

is a solution of the system (1.1) whose graph passes through the point 

(X,, y,( when t = 0; 

2) unstable, if there exists a small enough neighborhood S(M, 6) such 

that when (z,, y,)~i-S(M, a), then p((x, y), M) + 0 when t + - m; 

3) semistable, if there exists a small enough neighborhood S(M, 6) 

which is divided by M into two regions S, and S, such that p((x,y),M)+ 0 

when t + m, (x,,, yO)~~~S1 and p((x, y), M) + 0 when t + - m, (x,,yO)~~S,. 

In connection with all possible pictures (configurations) which 

illustrate the behavior of the integral curves in the neighborhood of a 

periodic solution (1.2), there arises the question on the stability in 

the Liapunov sense [2 1 of this periodic solution or on its conditional 

stability in the Liapunov sense. 'lhe problem of the present article is 

the formulation of criteria which will permit one to distinguish between 

various types of the qualitative behavior of integral curves, and also 

to determine the stability or instability, in the Liapunov sense, of the 

periodic solution (1.2). 

2. The fundamental form of the equations of motion. Let us 
draw through each point of the graph h4 of the periodic solution (1.2) a 

normal, and let us take such a small neighborhood S(M, 6)C G that the 

segment of the normals contained in this neighborhood which correspond 

to distinct points of M will not intersect. Furthermore, the segment of 

the normal passing through the point (&(t), q&(t)) which is contained 

in SW, 6) will be denoted by N,. $r a theorem on continuity with respect 

to initial conditions, one can find a point (x,,, ya)G-~N, such that the 

solution (1.3) of the system (1.1) will lie in S(M, 6) when tK[-T, T I, 
where T > 0 is chosen arbitrarily. Let us keep fixed the chosen point 

(x,, ya). We construct the segment of the normal N, which corresponds to 

a small enough value t > 0. We denote by 
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z = T (t) (2.f) 

the first instant of the intersection of the graph of the solution (1.3) 

corresponding to the fixed initial point x0, y,, with the normal N, when 

t moves in the positive direction t > 0. We introduce into consideration 

the functions 

21 (t) = 3 (r (q, 507 Yo) - ‘pl w, &z(Q = Y (t(t), 43. .yo) - (P2w (2.2) 

Now we consider the function 

H.(z,, z2, t) = Zlfl w -k %f2 (4, vi w = li (($1 w7 92 W)) (2.3) 

Since z,(t), z,(t) is a vector colinear with N,, we have 

H (21 (l), z2 (t)) ZG 0 

Let us construct the differential equations whose solutions are the 

functions (2.1) and (2.2): 

&king use of (l.l), (2.2), (2.4) and (2.5), we find 

d? 

dt= 
f2 (t) + f2 (t) - z&l (t) / dt - zadfa (t) / dt - 

h(t) fl (a+ 99 22 + cpa) + fz (t) fa b + (Pls za + qa) P-6) 
da 
- = d&rI (21 + (Plv 22 + cp2> -tfl WV dt 

dza dr 

dt= dt - f2 @I + 'ply 22 + cp2) -f2 PI (2.7) 

?he relations (2.6) and (2.7) which we have found for the specific 

functions (2.1) and (2.2) can be treated as a system of differential 

equations for the determination of the functions I, z1 and z2. This 

system has a number of properties which are useful for solving the stated 

problem. 

Lemma 2.1. Ihe function H(zI, z2, t) defined by the relation (2.3) is 

an integral of the system (2.7). 

CoroZZary. Let us consider the solution of the system (2.7) 
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Zi = Zi (t, Zlo, Z2°, to) (i = 1.2) 

and the solution of Equation (2.6) 

-c = z (t, ZlO, zz”, to) 

W-9 

(2.9) 
determined by the initial conditions 

Zi = Zi” when t = to, Z = tawhent = t,. 

By Lemna 2.1. the function H, evaluated on the solution (2.8) of the 

system (2.7), remains constant. Let us give a geometric interpretation 

of this situation. 

Through the points of the graph Mlet us draw directed lines, so that 

the line, with direction v t, passing through the point 4,(t), q&,(t) 

makes an angle with the tangent whose cosine is given by the formula 

cos 9t = 
H (~1, a, t) 

I/f? (1) + f-2 (q-~/z,, + 22 

where z1 and z2 are determined by (2.8). 

One can assert that the solution (2.8) of the system (2.7) determines 

the solution 

5 (r-to, x0, $3) = Zl@, ZlO, zz", to) + cPl@) 

Y (r ---to, q, yo) = z,(t, ZlO, zz", CJ + q2(t) 
(2.10) 

of the system (1.1) with the initial conditions x0 = zr" + &(ta), 

Yo = zz” + cjP(tO) when t = t,,. 

Indeed, differentiating both sides of Equations (2.10) with respect 

to t, and making use of Equations (2.6) and (2.7), we find that the 

functions x and y, as functions of the argument r - t,, satisfy the 

system (1.1). Hereby, the solution (2.10) with t = to passes through the 
point (x,, ya) which lies on the direction vtO, and at the instant t 

passes through a point lying on the direction vl. 

The above-given lemma makes it possible to lower the order of the 

system (2.6), (2.7) by utilizing its integral H. 

Let us introduce new unknown functions by means of the formulas 

E = z1faW --2fl cq, rl = Zlfl(O + z2f2 P> (2.11) 
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Inverting this transformation, we obtain 

Efa w + rlfl (t) 
z1 = fl* (t) + f**(t) ’ % = 

- Efl 0) + rlfa (t) 
fl2 (t) + f22 (t) 

(2.22) 

Differentiating (2.11) with the aid of (2.6) and (2.71, we find 

d% 
dL r/1 (21 + icplW7 22 + 'p2 P)) /a(t) -f2 (21 + dt= dt 

+ 'pl (0, 22 + 92 b)) fl @>I + dl (t) Z1ddfi(t) - - --yg--- 

dn 0 -= 
ut 

(2.13) 

Bearing in mind that the quantity 77 is constant, and taking into 

account the behavior of the solutions of the system (1.1) which start on 

N a, one can set q E 0, which does not restrict the generality of the 

problem stated in Section 1. 

Keeping this in mind, we eliminate the functions z1 and z2, defined 

by Equations (2.12), from Equations (2.6) and (2.13). 

Ihen we obtain 

dz fi* (t) -I- fz2 (t) - (al’41 (4 dt + az”dfe (0 / dt) E 

- = h(t) fl@l"% + cp dt 1, aaO% + cpa) + fr Wfa ho% + (PI, aaO% + cpz) 
(2.14) 

df 
dT- = If1 (a,%+($1 (9, %T + ‘Pa (4) fa w--fa @l?i+cpl e>, %%+cp, (41 fl (91 x 

X 
If? 0) + fa2 (4 - (al"df1 (4 / dt + aa’dfa (t) / dt) El 

Ifl(t) fl @lo% + cpl, no% + cp2) + f2 (Of2 (al05 + p1, a2"% + cpr)l + 

.dfs (t) 
+[a, ~-a.$*]g 

where 

Ul0 = fa (t) fl (t) 
fl% (1) + fa* (t) ’ u2o = - fi2 (t) + fa2 (4 

(2.15) 

Let us denote the right-hand side of (2.14) by F(c, t) and the right- 

hand side of (2.15) by C([, t). Setting r = f3 9't in Equation (2.141, we 

obtain the equation 

&/&=F&t)-1 (2.16) 

for the determination of the function 8. 

The last equation, together with the equation dt/dt = F(5, t), we 
shall call the fundamental form of the equations of motion. 

Theorem 2.1. In order that the periodic solution of the system (1.1) 



450 V.I. Zubov 

be stable in the sense of Liapuuov, it is necessary and sufficient that 
the zero solution 8 = 0, t= 0 of the system (2.151, (2.16) be stable in 
the sense of Liapunov. 

Proof. Necessity. Suppose that the periodic solution a = q+(t), 
y = (Pz(t) of th e system (1.1) is stable in the Liapunov sense, i.e. for 
every fixed to and any given 6 > 0 there exists a 6(c) such that when 
v'[(xO - ~~(t~~)* + (y. - +262(t,))21 < 8 thenv'[(x- alit))‘+ 

(y - $,(t))*l < E if t ia to, where x, y is a solution of the system (1.1) 
with the initial conditions x0, y0 when t = t,,. 

Let us consider the solution 

E = E (4 El?, a 6 = 8 6 Eat 4p to) (2.17) 

of the system (2.15), (2.16) with the initial conditions to, 8, when 
t = to, 

Ihe solution (2.17) can be expressed in terms of the solution of the 
system (1.1) in the following way. 

Let r(t, X0' y(j, to> be a single-valued continuous function whose 
values give the instant of intersection of the solution x(t - to, x0, y,), 

y(t - to, x0, yo) of the system (1.1) with the Nt-direction, under the 
condition that the initial point (x,, yo) lies on the direction N, . 

0 

Then the functions 

F; = fa (4 P CT - to, 20, ?/a) - ‘pl P)l- fl (t) [Y CT - to> 201 Yo) - ‘Pa @>I (2-W 
e=e,+z-t 

will yield the solution of the system (2.151, (2.16) with the initial 

conditions 

g =E,==f2@omJ- ‘PI (to)1 - f~ (to) [pa - 92 (t,)l, 6 = 0, when t = to (2.19) 

Our iaraediate aim is the estimation of r - t. 

Suppose that L is the length of the closed curve M. Let us divide M 

by means of the points A,, . . . . A,_, into n equal arcs. On the arc 
CAj, A.+11 
pass t h rough 

we take a point Bj such that a circle with center at Bj will 
the points Aj and Aj+ l(A, = Ao). Let 

vlgoi,n: Vfl” (t) + fa2 Ct) (tE[wd) 
.n, 
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If we now denote by tj the time length of the arc [Aj, Aj+ 1I, then 
we will have 

tj<L/nv 

We shall assign different positions to the point A, on the curve M. 
'Iben on the basis of the principle of choice [3 I, there will exist a 
lower boundary p,, > 0 for the radii of all possible circles. Inside 
each of these circles we construct a concentric circle of radius a < pb. 
One can select a,, > 0 so small that no two of the circles of radius a0 
with centers at B. will intersect for any fixed position of A,. Here, 
a,,, p0 and tj wll approach zero if n + m. * i 

Suppose that for the sake of definiteness r < t on some interval. 
Selecting A, so that B,EIVt, and taking a,, in the nature of E, we con- 
sider the instant of time t + to, where to is the time length of the arc 

[Bo, B, I. At the instant t + to we will have 

I/[x (t+t”-t 0, x0, y,) - 'pl (t + top + [Y (t + to - to, IO> Yo) - ‘Pa (t+t”)l” <a 

But then, during the time interval [ t, t + toI, the solution of the 
system (1.1) will intersect the direction N,. Hence, t - r < to B ~L/w. 
From this we find that in general 

IT -tj(2L/nv 

Next, one can show that the solution of the system (1.1) 

(2.20) 

x (t - to, x07 Yo), Y (t- to, 20, Yo) 

is uniformly continuous when t > to. 

Indeed, because of its stability this solution is contained for 
t > t, in S(M, 4 1. For a sufficiently small c, dx/dt and dy/dt are 
bounded in S(M, E), when t A to, by the same number, which shows the 
correctness of the above assertion. 

We now give bounds for the functions 6 and 8: 

1 E 1 < I fz (t) I I x (t -- to, 509 Yo) - 'pl (4 I + I fl @I I I Y (t - to, 20, Yo) - cp2 (q 1 + 

it 

-t- If2 (9 lb (f -to, 50, YJ - x (t - to, 50, Yo) I + I fI(O I I Y (r - to, x0, Yo) - 

-Y(t-to~~o~Yo)l~ I~l<l~oI+l~-q 

From what has been established before, and from the last inequalities, 
follows that for sufficiently small Ito 1 and l13,,I, the quantities 
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15‘1 and IOl will be arbitrarily small when t a t,,. 'lhis completes the 

proof of the necessity. 

Sufficiency. Suppose the zero solution of the system (2.15), (2.16) is 

stable. We shall show that the periodic solution (1.2) of the system 

(1.1) is stable in the Liapunov sense. 

Indeed, let us select the point (x0, ya)ES(M, 6), where 6 is a small 

enough positive number, and to so that 

v [x0 - 'pl Oo)12 + wo - (Pa (to)Y < 61 

Next we choose a too so that the directed segment N, ' contains the 
0 

point (x0, yo). We now construct 

E = E (4 EO,~OO), 

the solution 

fj = r (4 Eo, to") - 

of the system (2.15), (2.16). 

It is clear that if 8, is sufficiently small, then 

can be arbitrarily small, and hence the quantities 

1% (r - too409 Yo) - ‘pl (0 1, I Y @ - too, $0, Yo) 

will also be small when t > too. 

From the uniform continuity of the functions $,(t) 
the smallness of the quantities 

- ‘p2 @> I (2.21) 

and c&(t) follows 

‘pi @ - too + to) - ‘pi (0 when tat,', i=1,2 (2.22) 

In view of (2.21) and (2.22), we now find that the quantities 

12 (t - to, x09 Yo) - R(t) I, I Y (t -to, x0, Yo) - cp2 0) I 

are arbitrarily small for t > to if 6, is sufficiently small. lhis 

completes the proof of the sufficiency. 

Note. ‘Ike closed curve W divides its neighborhood S(M, 6) into two 

regions S, and S,. One can ask the question of the stability, in the 

Liapunov sense, of the periodic solution (1.2) of the system (1.1) under 

the condition that the initial point (x0, yo) lies in one of the regions 

S, or S,. 'lhe question on this type of conditional stability in the 

Liapunov sense can be reduced to the question on the stability (in the 

Liapunov sense) of the zero solution of the system (2.X), (2.16) under 

the condition that 5 > 0 or 5 < 0. 'lhe validity of this assertion follows 

from the proof of Theorem 2.1. 
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Theorem 2.2. To every periodic solution of the system (1.1) contained 
in a small enough neighborhood of M, there corresponds a 2w-periodic 
solution of Equation (2.15). lb is equation (2.15) has no other periodic 
solutions which lie in a correspondingly small enough neighborhood of 
the point [ = 0. 

Proof. Suppose that in the neighborhood S(M, 6) of the set M there is 
contained the graph of a periodic solution q+(t), &l,(t) of the system 
(1.1) of period T. 

Let us denote by (r/llo, 1/12’) the point of intersection of the graph of 

this solution with the direction No, and let us set 

Eo = fz (0) [Iho - 'pl (0)l - fl (0) [*so - ‘pz (OH 

We shall show that [ = & t , to, 0) is a 2n-periodic solution of Equa- 
tion (2.15). We may write the equation for the quantity r which corre- 
sponds to the periodic solution q+/,(t), $z(t) in the form 

dz/dt = f ($1 (r), $a (r), t) (2.23) 

Equation (2.23) is obtained from (2.14) if one replaces 5‘ in it by 

E=fa(t)[~)1(Z)-~1(t)l-f1(t)[~a(z)-cPa(t)l (2.24) 

The right-hand side of Equation (2.23) is a periodic function in t of 
period 2n and in r of period T, We shall denote by r (t 1 the solution of 
Equation (2.23) with the initial condition r = 0 when t = 0. 

From geometric consider&ions it is clear that r (2n 1 = T. By means 
of a simple verification, we can convince ourselves that the function 
r(t + 2n) - T is a solution of (2.23) with the same initial conditions 
as those of r (t). Because of the uniqueness theorem we have r (t + 217) = 
r(t) + T. 

The last relation shows that’ the function 5, defined by Formula (2.24), 
is a periodic function of period 2~. 

If one now assumes that Equation (2.15) has a periodic solution, then 
one has to admit two possibilities: either two distinct values of 5 co- 
incide on No, or this does not happen. In the first case, e is a periodic 
solution, of period 217, corresponding to a solution of (1.1); in the 
second case, 6 will describe a spiral motion, and hence it cannot be a 
periodic solution of the system (2.15). 

3. Analytic case. Let us assume that the right-hand sides in the 
system (1.1) are analytic in x and in y in a small enough region of K 



454 V.I. Zubov 

lhen Equations (2;15), (2.16) can be expressed as 

g = ; a, (t) E”, 
k=l k=l 

bk (t) E" (3.1) 

where the series in (3.1) converge when 161 < r, r > 0. 

Direct computations show that 

set 

+ + -& ln [A” (t> + j22(Ol (3.2) 

Let us 

,8& = 1 bl @) dt = f [ at1 hi (2; [Pa tt)) + ah bi (f?l; qa (t)) ] & (3.3) 
0 0 

It is known [4 I that when G, < 0 the periodic solution (1.2) of the 

system (1.1) is a stable limit cycle, and, as a matter of fact, it is 

stable in the sense of Liapunov; if G, > 0, the solution 

stable limit cycle which is stable in the Liapunov sense 

Let us see what happens when G, = 0. We make a change 

(3.1) by setting 

E =qexp\ b,(t)& 
0 

Then we obtain 

z = 5 ~0 (t) $, 
k=l 

$ = ; bko (t) qk 
k=2 

Next we look for a solution of the second equation in 

form 

9 = c + &(t)c2 + . . . +&(t)Ck + . . . 

(1.2) is an un- 

when t -f - m. 

of variables in 

(3.4) 

(3.5) 

(3.5) of the 

(3.6) 

where g,(t) (k = 2, 3, . ..) are periodic functions of period 2n which 

are still to be determined, while c is an arbitrary constant. 

Substituting (3.6) into (3.5) and equating coefficients of equal 

powers of c, we obtain 

dg,/dt = rh _ (k = 2, 3, . . .) (3.7) 



Integral curves in neighborhood of periodic motion 455 

If the functions g,, . . . . gik_ 1 can be shown to be periodic functions, 

then the function gk will also be periodic provided that 

arr 

5 
rkdt = Gk = 0 

Q 

Let us assume first that G, &IO f or some m > 2. Let this m be kept 

fixed. We next look for a solution of the first equation of (3.5) in the 
form 

8 = $ h, (t) qk (3.8) 

Substituting (3.8) into (3.5) and equating equal powers of 7, we find 

dhk/dt = Pk (k = 1, 2,. . .) (3.9) 

After h,, . . . . h,_, have been found, and if they turn out to be 

periodic, then h, will also be periodic, provided 

2% 

s 
P,dt = Fk = 0 

0 

Let us assume that there exists a number 1 z 1 such that F, f 0. Let 
this I be fixed. 

Theorem 3.2. 1) If- m is odd and G, < 0, then the periodic solution 
(1.2) of the system (1.1) is a stable limit cycle. If, furthermore, 
Z+l> m, then this periodic solution will be stable in the Liapunov 
sense, but it will be unstable in the Liapunov sense if 1 + 1 < m. 

2) If m is odd and G, > 0, then the periodic solution (1.2) of the 
system (1.11 is an unstable limit cycle. If, furthermore, I + 1 > I, 
then this periodic solution is stable in the Liapunov sense when t+-m, 
but it is unstable in this sense if 1 + 1 < m. 

31 If n is even, then the periodic solution (1.2) of the system (1.1) 
is a semistable limit cycle, Furthermore, if 1 + 1 > m, then this 
periodic solution is conditionally stable in the Liapunov sense in that 
direction in which the integral curves of the system (1.1) approach 
arbitrarily close to M. If, however, 1 + 1 Q I, then this type of condi- 
tional stability does not occur. 

Proof. Let us make the change of variables 
PI--l 

q=Z+ 2 gJk+(g,--GG,t)Z?, 
k=2 

Z-1 

0 = 6 + 2 h,qk + (hl- F,t) q’ 
k=l 

c-3.10‘, 
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‘Ihen we obtain for the determination of 
following equations: 

a, 

the functions 2 and G the 

co 

i==GmZm+ z] C&)2’, 6 = P$” + 2 c&(t) Z” (3.11) 
k-m-j-1 k=l+l 

Without loss of generality we may assume that the behavior of the 
solutions is being studied for 2 > 0. 

If we first consider the system of the first approximation 

de,ldt = .FlZ”, dZ/dt 3 G,Z” (3.12) 

then its direct integration leads to the formulas 

2 I Z, (1 + [I - m] GmZ,m-lt)l~ 

m-i-i 

6 = 60 + 
Fl 

I Cm-1 (1 - mf GmZom-l 
@-- 1) z,’ <[I + (I- m) GmZem-ft) -’ 
(m - l- 1) 

_ 1) 

When I = m - 1 

ci = 6, + In [ 1 + (I - m) G&3,“-‘t] Fl 

(I- m) G,zp--l 

From these formulas follows the validity of the assertions made in 
Theorem 3.1, since the effect of the dropped terms is unessential. 

Indeed, setting 2 = Ze when t = 0, we obtain from (3.11) 
z 

o=ql+ 2 \ 
l-mFt+.-. 

dZ 
i, 

G + 

m . . * (3.13) 

For all 2 < rO, where r,, is a sufficiently small positive number, we 
will have the inequality 

Ft-/-_.. 

aG Cm+... \<b (3.14) 

where a and b are constants such that ab > 0. 

From (3.13) and (3.14) we have, when Z <ra 
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60 + 
a 

I-m+l 

b 

[ Zz-m+l - Zoz-m+l] < Q < 00 + 

t l _ m + 1 [Z-+1 - Zy+l] (3.15) 

457 

if 1 - Jfl+lfO. 

If I - m + 1 = 0, we have 

ao+aln~,<c<~o+~ln~ 
0 

(3.16) 

'Ihe number r0 can be chosen so small that when Z< r,, we have 

CZ”<G,,,Z” + . . . <dZ”, cd > 0 (3.17) 

Integrating the terms in the inequality 

we obtain 

Z,{l +(I -~)dZom-‘t)l~m~Z~Zo{l + (1 -rn)cZom-$“’ (3.18) 

The inequality (3.18) will be valid whenever Z < r,,. lhe’inequalities 
(3.151, (3.16) and (3.18) lead at once to the proof of the theorem in 
the general case. 

Theorem 3.2. If for every m, G, = 0, then there exists a neighborhood 
of the periodic solution (1.2) of the system (1.1) such that through 
every point of this neighborhood there passes a periodic solution of the 
system (1. I). 

Hereby it is true that if F, = 0 for every 1, then the periodic solu- 
tion (1.2) is stable in the Liapunov sense. 

If, however, there exists an 1 such that F, fe 0, then the periodic 
solution (1.2) will not be stable in the Liapunov sense. 

Proof. If Ga = 0 when m > 2, then all terms of the series (3.6) are 
periodic functions. If 

then the series (3.6) is convergent C 5 1 when 1 c 1 < c,,. Hence, the series 
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determines a periodic solution for every c with modulus 1 cl G Co. Be- 
sides that, when F, = 0, I > 1, we have the equation (3.8) in which 
hk(t) will be a periodic function of period 2a, and the series on the 
right-hand side will converge when h Q h,. It follows from this that 
every periodic solution of the system (1.1) which lies in a small enough 
neighborhood of M has the period 2~. If, however, F, f&O for some 2, 
then, by ‘lheorem 2.1, one can conclude that the periodic solution (1.2) 
of the system (1.1) is unstable in the Liapunov sense. 

~eore~ 3.3. If the right-hand terms in the system (1.1) are analytic 
functions of x and y in some neigh~rhood of M, then the periodic solu- 
tion (1.2) of the system (1.1) is either a limit cycle, or through every 
point of some smsll enough neighborhood S(M, 6) there passes a periodic 
solution of the system (1.1). 

The proof is a direct consequence of ‘Iheorems 3.1 and 3.2. 

4. Bemarks of general nature. In this section we shall make some re- 
marks of a general nature without giving any proofs of our assertions. 

4.1. If the right-hand terms in the system (1. I) are n times differ- 
entiable in their arguments, then the right-hand terms of Equations 
(2.15) and (2.16) wvfll have the same property. 

If one applies Taylor’s formula for the representation of the right- 
hand sides, and then drops the remainder terms, then one obtains a System 
of equations, for the determination of 6 and 5, with polynomial right- 
hand sides (on the right-hand side will occur polynomials with periodic 
coeffibients). If in the application of Theorem 3.1 to these polYnomials 
it should turn out that D < n, or I > n, then all the conclusions of 
Theorem 2.1 remain valid for the original system (1.1). 

4.2. The application of Theorem 3.1, more precisely, of the ideas con- 
tained in its proof, makes it possible to obtain a deeper insight than 
that afforded by the usual results for systems containing a small Para- 
meter, even then when the solution (1.2) and its period depend on this 
parameter. 

4.3. The general case can be covered by considering the roots of the 
equation 

where 
? (Eo) = 0 

Ip = % (2%; Eo. 0) - %o* 1 %!I I < 8, 8 > 0-- is sufficiently small 
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